Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanotechnologies in regenerative medicine

Authors: Šárka Kubinová; Eva Syková;

Nanotechnologies in regenerative medicine

Abstract

Nanotechnology offers promising perspectives in biomedical research as well as in clinical practice. To cover some of the latest nanotechnology trends in regenerative medicine, this review will focus on the use of nanomaterials for tissue engineering and cell therapy. Nanofibrous materials that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for the skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes and cytokines. As a new approach, nanofibers prepared by using industrial scale needleless technology have been recently introduced, and their use as scaffolds to treat spinal cord injury or as cell carriers for the regeneration of the injured cornea is the subject of much current study. Cell therapy is a modern approach of regenerative medicine for the treatment of various diseases or injuries. To follow the migration and fate of transplanted cells, superparamagnetic iron oxide nanoparticles have been developed for cell labeling and non-invasive MRI monitoring of cells in the living organism, with successful applications in, e.g, the central nervous system, heart, liver and kidney and also in pancreatic islet and stem cell transplantation.

Related Organizations
Keywords

Wound Healing, Biomedical Research, Tissue Engineering, Tissue Scaffolds, Nanotubes, Carbon, Cell- and Tissue-Based Therapy, Nanofibers, Transplants, Regenerative Medicine, Magnetic Resonance Imaging, Extracellular Matrix, Nanomedicine, Humans, Magnetite Nanoparticles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?