Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Medicine
Article . 1996 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced Glycation End-products and Atherosclerosis

Authors: Helen Vlassara;

Advanced Glycation End-products and Atherosclerosis

Abstract

The late rearrangements of the covalent nonenzymatic modification of proteins by glucose, called advanced glycation end-products (AGEs), have been shown to accumulate in diabetic and ageing tissues. AGEs elicit a wide range of cell-mediated responses leading to vascular dysfunction, matrix expansion and athero- and glomerulosclerosis. Cellular responses are thought to be largely induced through an AGE-specific cell-surface receptor complex (AGEr). Interaction of AGE-modified proteins with these cells may serve diverse purposes, including disposal of senescent AGE-modified molecules and initiation of tissue repair and protein turnover. In humans, the normal renal clearance rate for the AGE-degradation products found in serum, AGE peptides (AGEp), correlates inversely with renal creatinine clearance rate. Of note, circulating AGEp include reactive intermediates which readily attach covalently to either insoluble matrix collagen or serum proteins, e.g. low-density lipoproteins (LDL), to form AGEp collagen and AGEp-LDL. Consistent with this, diabetic and nondiabetic patients with renal failure (a group highly susceptible to accelerated atherosclerosis) exhibit markedly elevated AGE-modified serum LDL. In summary, in addition to glucose-derived AGEs, the endogenously produced degradation products, AGE peptides, can amplify tissue damage and thus account as distinct toxins. The effects may particularly accelerate glucose toxicity in certain individuals that are genetically susceptible to diabetic renal and extrarenal disease.

Related Organizations
Keywords

Glycation End Products, Advanced, Arteriosclerosis, Diabetes Mellitus, Animals, Humans, Receptors, Cell Surface, Endothelium, Vascular, Enzyme Inhibitors, Guanidines

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    206
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
206
Top 10%
Top 1%
Top 1%
gold