Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interactions of cytosolic sulfotransferases with xenobiotics

Authors: Sriram Ambadapadi; Margaret O. James;

Interactions of cytosolic sulfotransferases with xenobiotics

Abstract

Cytosolic sulfotransferases are a superfamily of enzymes that catalyze the transfer of the sulfonic group from 3'-phosphoadenosine-5'-phosphosulfate to hydroxy or amine groups in substrate molecules. The human cytosolic sulfotransferases that have been most studied, namely SULT1A1, SULT1A3, SULT1B1, SULT1E1 and SULT2A1, are expressed in different tissues of the body, including liver, intestine, adrenal, brain and skin. These sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, and in the elimination of xenobiotic molecules such as drugs, environmental chemicals and natural products. There is often overlapping substrate selectivity among the sulfotransferases, although one isoform may exhibit greater enzyme efficiency than other isoforms. Similarly, inhibitors or enhancers of one isoform often affect other isoforms, but typically with different potency. This means that if the activity of one form of sulfotransferase is altered (either inhibited or enhanced) by the presence of a xenobiotic, the sulfonation of endogenous and xenobiotic substrates for other isoforms may well be affected. There are more examples of inhibitors than enhancers of sulfonation. Modulators of sulfotransferase enzymes include natural products ingested as part of the human diet as well as environmental chemicals and drugs. This review will discuss recent work on such interactions.

Related Organizations
Keywords

Gene Expression, Substrate Specificity, Xenobiotics, Isoenzymes, Cytosol, Organ Specificity, Inactivation, Metabolic, Animals, Humans, Sulfotransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?