
pmid: 35864764
The cellular, molecular and physiological basis of cognition has proved elusive until emerging studies on astrocytes. The appearance of a deliberate aggregating element in cellular neurophysiology was difficult to satisfy computationally with excitatory and inhibitory neuron physiology alone. Similarly, the complex behavioral outputs of cognition are challenging to test experimentally. Astrocytic reception and control of synaptic communication has provided the possibility for study of the missing element. The advancement of genetic and neurophysiological techniques have now demonstrated astrocytes respond to neural input and subsequently provide the ability for neural synchronization and assembly at multiple and single synaptic levels. Considering the most recent evidence, it is becoming clear that astrocytes contribute to cognition. Is it possible then that our cognitive experience is essentially the domain of astrocyte physiology, ruminating on neural input, and controlling neural output? Although the molecular and cellular complexities of cognition in the human nervous system cannot be overstated, in order to gain a better understanding of the current evidence, an astrocyte centric basis of cognition will be considered from a philosophical, biological and computational perspective.
cognition, Neurons, neural synchrony, philosophy of mind, Neurosciences. Biological psychiatry. Neuropsychiatry, astrocyte, Cognition, synapse, Astrocytes, Synapses, Humans, learning and memory, neurophilosophy, computational neuroscience, RC321-571
cognition, Neurons, neural synchrony, philosophy of mind, Neurosciences. Biological psychiatry. Neuropsychiatry, astrocyte, Cognition, synapse, Astrocytes, Synapses, Humans, learning and memory, neurophilosophy, computational neuroscience, RC321-571
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
