Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Mathe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Mathematical Society of Japan
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 1951
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1951
Data sources: zbMATH Open
Journal of the Mathematical Society of Japan
Article . 1951 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algebraic Correspondences between Algebraic Varieties

Algebraic correspondences between algebraic varieties
Authors: IGUSA, Jun-ichi;

Algebraic Correspondences between Algebraic Varieties

Abstract

Über dem komplexen Zahlkörper als Konstantenkörper werden zwei vollständige (complete) MannigfaItigkeiten \(U\) und \(V\) betrachtet. Ein Divisor \(X\) von \(U\times V\) wird \glqq Korrespondenz\grqq{} zwischen \(U\) und \(V\) genannt. \(X\) heißt von der Wertigkeit \(0\), wenn er die Form besitzt: \(X = Y_1 \times U\times Y_2 + (\varphi)\), wo \(Y_1\) ein \(U\)-Divisor, \(Y_2\) ein \(V\)-Divisor und \((\varphi)\) der Divisor einer Funktion \(\varphi\) auf \(U\times V\) ist. Rechnet man modulo den Korrespondenzen der Wertigkeit \(0\), so bilden die Korrespondenzen zwischen \(U\) und \(V\) den \glqq Korrespondenzmodul\grqq{} \(C(U, V)\). Zur Bestimmung von \(C(U, V)\) wird zusätzlich die Existenz von nichtsingulären projektiven Modellen für \(U, V\) vorausgesetzt. Es sei auf \(U\) eine Basis \(\Phi_i\) der Picardschen Differentiale 1. Gattung vorgegeben, sowie eine Basis \(\gamma_j\) der eindimensionalen Zyklen; es sei \(\Omega = \left( \int_{\gamma_j} \Phi_i\right)\), die zugehörige Riemannsche Periodenmatrix. Es gehöre \(\Omega\) zur Abelschen Mannigfaltigkeit \(A\), und entsprechend konstruiere man, von \(V\) ausgehend, eine Abelsche Mannigfaltigkeit \(B\). Verf. zeigt: \(C(U, V)\) ist isomorph zum Modul \(H(A B)\) aller Homomorphismen von \(A\) in \(B\) (im Sinne von \textit{A. Weil} [Variétés abéliennes et courbes algébriques. Paris: Hermann (1948; Zbl 0037.16202)]. Da \(H(A, B)\) nach A. Weil nur von den Kategorien von \(A, B\) abhängt, so kann man in dieser Formulierung \(A\) durch die Albanesische Mannigfaltigkeit von \(U\), und \(B\) durch die Picardsche Mannigfaltigkeit von \(V\) ersetzen; diese letztere Formulierung des Satzes ist nach den Worten des Verf. die natürliche.

Related Organizations
Keywords

Algebraic geometry, 14.0X, Field theory and polynomials

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid