
By means of the adelic compactification $\widehat{R}$ of the polynomial ring $R := \mathbb{F}_q [x]$, $q$ being a prime, we give a probabilistic proof to a density theorem: $$ \frac{\# \{(m, n) \in \{0, 1, \dots, N-1\}^2\ ;\ \varphi_m \text{ and }\varphi_n \text{ are coprime}\}}{N^2} \to \frac{q-1}{q}, $$ as $N \to \infty$, for a suitable enumeration $\{\varphi_n\}_{n=0}^{\infty}$ of $R$. Then establishing a maximal ergodic inequality for the family of shifts $\{\widehat{R} \ni f \mapsto f + \varphi_n \in \widehat{R}\}_{n=0}^{\infty}$, we prove a strong law of large numbers as an extension of the density theorem.
60B10, 60F15, 60B15
60B10, 60F15, 60B15
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
