Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal RESTI (Rekaya...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

XGBoost Algorithm for Cervical Cancer Risk Prediction: Multi-dimensional Feature Analysis

Authors: Sudi Suryadi; Masrizal;

XGBoost Algorithm for Cervical Cancer Risk Prediction: Multi-dimensional Feature Analysis

Abstract

Cervical cancer continues to pose a significant global health challenge, with early detection remaining the cornerstone for effective intervention. This study is situated at the intersection of clinical oncology and computational intelligence, exploring the potential of gradient-boosting algorithms to overcome the limitations of conventional screening methodologies. An XGBoost model was developed to predict cervical cancer risk. This model incorporates demographic, behavioral, and clinical parameters. The model was developed using data from 858 patients at the Hospital Universitario de Caracas. The preprocessing pipeline was designed to address the complexities inherent in medical data, including strategic management of missing values and standardizing heterogeneous features. The model demonstrated an overall accuracy of 96.3%, with a sensitivity of 66.7% and a specificity of 97.6%. This performance profile indicates adept navigation of the delicate balance between missed diagnoses and unnecessary interventions. Feature importance analysis revealed a multifaceted risk landscape, where screening test results contributed substantial predictive power (approximately 60%), complemented by demographic and behavioral factors, including age, reproductive history, and contraceptive usage patterns. The confusion matrix analysis revealed the clinical implications of the model predictions, demonstrating a promising positive predictive value of 55.0% despite the pronounced class imbalance. These findings suggest that ensemble learning approaches can effectively synthesize diverse patient data into meaningful risk assessments, potentially enhancing screening efficiency through personalized stratification. Future research directions include prospective validation across diverse populations, integration of longitudinal data, and further exploration of explainable AI techniques to bridge the gap between algorithmic predictions and clinical implementation.

Related Organizations
Keywords

xgboost, TA168, computational oncology, machine learning, cervical cancer screening, risk stratification, Information technology, T58.5-58.64, XGBoost, Systems engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Cancer Research