Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hadronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ON RELATIVISTIC HARMONIC OSCILLATOR

Authors: Arbab, A. I.;

ON RELATIVISTIC HARMONIC OSCILLATOR

Abstract

A relativistic quantum harmonic oscillator in 3+1 dimensions is derived from a quaternionic non-relativistic quantum harmonic oscillator. This quaternionic equation also yields the Klein-Gordon wave equation with a covariant (space-time dependent) mass. This mass is quantized and is given by $m_{*n}^2=m_ω^2\left(n_r^2-1-β\,\left(n+1\right)\right)\,,$ where $m_ω=\frac{\hbarω}{c^2}\,,$ $β=\frac{2mc^2}{\hbar\,ω}\, $, $n$, is the oscillator index, and $n_r$ is the refractive index in which the oscillator travels. The harmonic oscillator in 3+1 dimensions is found to have a total energy of $E_{*n}=(n+1)\,\hbar\,ω$, where $ω$ is the oscillator frequency. A Lorentz invariant solution for the oscillator is also obtained. The time coordinate is found to contribute a term $-\frac{1}{2}\,\hbar\,ω$ to the total energy. The squared interval of a massive oscillator (wave) depends on the medium in which it travels. Massless oscillators have null light cone. The interval of a quantum oscillator is found to be determined by the equation, $c^2t^2-r^2=λ^2_c(1-n_r^2)$, where $λ_c$ is the Compton wavelength. The space-time inside a medium appears to be curved for a massive wave (field) propagating in it.

9 LaTeX pages, no figures

Keywords

Quantum Physics, Physics - General Physics, General Physics (physics.gen-ph), FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green