
Lewis’ theory of counterfactuals is the foundation of many contemporary notions of causality. In this paper, we extend this theory in the temporal direction to enable symbolic counterfactual reasoning on infinite sequences, such as counterexamples found by a model checker and trajectories produced by a reinforcement learning agent. In particular, our extension considers a more relaxed notion of similarity between worlds and proposes two additional counterfactual operators that close a semantic gap between the previous two in this more general setting. Further, we consider versions of counterfactuals that minimize the distance to the witnessing counterfactual worlds, a common requirement in causal analysis. To automate counterfactual reasoning in the temporal domain, we introduce a logic that combines temporal and counterfactual operators, and outline decision procedures for the satisfiability and trace-checking problems of this logic.
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Logic in Computer Science (cs.LO)
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Logic in Computer Science (cs.LO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
