Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://easychair.or...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.29007/fnwf...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

Concepts for Developing Interoperable Software Frameworks Implementing the New IEEE 11073 SDC Standard Family

Authors: Andreas Besting; Dominik Stegemann; Sebastian Bürger; Martin Kasparick; Benjamin Strathen; Frank Portheine;

Concepts for Developing Interoperable Software Frameworks Implementing the New IEEE 11073 SDC Standard Family

Abstract

The long overdue IEEE 11073 Service-oriented Device Connectivity (SDC) standard proposals for networked and surgical devices provide vendor-independent interoperability and therefore room for improved workflow and new functionality in the operating room. Research and development in this domain remain also highly topical in orthopaedic surgery. Due to the novelty and complexity of the SDC standard family, there is currently a lack of open source public implementations. Such implementations have to overcome several non-trivial challenges, mainly because the complexity of the standards has to be reflected in the software design and implementation. The SDC standard family comes in three different parts and all three standard proposals must be considered when designing and implementing standard conform device communication. In this work, we address these challenges and discuss and compare two design approaches for different programming languages (C++ and Java). Suitable software engineering principles are used to ensure a clean design approach. Practical guidelines are given on how to integrate existing third party components and tools in the framework and the development process, respectively. General feasibility is demonstrated by outlining interoperability between two software frameworks developed using different design concepts.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze