<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.2741/s357
pmid: 23277036
Point-of-care biosensor systems can potentially improve patient care through real-time and remote health monitoring. Over the past few decades, research has been conducted in the field of biosensors to detect patterns of biomarkers and provide information on their concentration in biological samples for robust diagnosis. In future point-of-care applications, requirements such as rapid label-free detection, miniaturized sensor size, and portability will limit the types of biosensors that can be used. This paper reviews label-free detection techniques using Biological MicroElectroMechanical Systems as a potential candidate for point-of-care biosensing applications. Furthermore, detailed surveys have been carried out on wireless networking schemes applicable for a point-of-care environment and on prognostic techniques that will enable decision-support services. This paper concludes by providing a list of challenges that must be resolved before realizing biosensor systems for next-generation point-of-care applications.
Point-of-Care Systems, Humans, Biosensing Techniques, Micro-Electrical-Mechanical Systems, Biomarkers
Point-of-Care Systems, Humans, Biosensing Techniques, Micro-Electrical-Mechanical Systems, Biomarkers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |