
doi: 10.2741/e620
pmid: 23276994
Reconstruction and regeneration of new tissues are challenges facing scientists, technologists and clinicians. This review describes strategies of selection and design of biomaterials having significant impact on various possible synthesis routes for scaffold fabrication. The criteria for three-dimensional (3D) scaffold architectures are explored in tandem with biomaterial properties such as porosity, interconnectivity and mechanical integrity. The cell-surface biointerface is outlined in terms of biomaterial composition, target tissues and biological evaluation with emphasis on bone tissue engineering. Comparative merits and demerits of conventional and rapid prototyping (RP) approaches of fabrication are discussed. The conventional methods are often simple to design, inexpensive and flexible to optimise or modulate physicochemical properties. Despite being expensive and suffering from certain drawbacks of choice of materials and capital costs many generic RP techniques are extremely attractive in their ability to mimic new tissue structures and possibility of incorporating pharmaceutical agents. The future directions include scaffold development using nanobiomaterial based biosystems /biointerfaces where cell biology including genetically modified tissue engineering approaches can play a cross-disciplinary role for the success of tissue augmentation.
Ceramics, Tissue Engineering, Tissue Scaffolds, Polymers, Biocompatible Materials, Extracellular Matrix
Ceramics, Tissue Engineering, Tissue Scaffolds, Polymers, Biocompatible Materials, Extracellular Matrix
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
