
doi: 10.2741/e339
pmid: 21622142
Cartilage is poorly vascularised with a limited capacity for repair following damage. The poor vascularisation results in cartilage tissue having a low normoxic value. This study examined and compared the effects of physiological cartilage normoxia (2% O2), hypoxia (0.2% O2), and hyperoxia (21% O2) on human articular chondrocytes (hAC) during similar time courses to those prior to transplant in cell therapy procedures. hAC were isolated and maintained at 0.2% O2, 2% O2, or 21% O2. Population doublings (PDs), cell surface area, chondrogenic differentiation potential, RT-PCR, quantitative RT-PCR and immunohistochemistry (Collagen Type II) were used to confirm chondrogenic differentiation of micromass pellets in different O2. Isolation and maintenance of hAC at =2% O2 resulted in significant alterations in surface area (smaller), rate of proliferation (reduced), and chondrogenic differentiation potential (enhanced). Chondrogenic gene expression appeared largely insensitive to O2 concentration. A relationship was apparent between collagen type II protein presence and O2 concentration. Oxygen concentrations of 2% O2 or less promoted retention of a dedifferentiated hAC phenotype and enhanced stability of hAC chondrogenesis.
Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, Cell Differentiation, Middle Aged, Immunohistochemistry, Oxygen, Chondrocytes, Humans, Female, Aged, DNA Primers
Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, Cell Differentiation, Middle Aged, Immunohistochemistry, Oxygen, Chondrocytes, Humans, Female, Aged, DNA Primers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
