<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.2741/a770 , 10.2741/mustelin
pmid: 11779706
The molecular mechanisms of signal transduction have been at the focus of increasingly intense scientific research. As a result, our understanding of protein tyrosine kinase-mediated signaling has advanced at an unprecedented pace during the past decade. In contrast, the study of protein tyrosine phosphatases has lagged behind, but is now gathering momentum and is predicted to become a "hot topic" in the field within the next few years. This review summarizes the current state-of-the art in our understanding of the structure, regulation and role of protein tyrosine phosphatases with emphasis on the lymphocyte system.
T-Lymphocytes, Animals, Humans, Protein Tyrosine Phosphatases, Lymphocyte Activation, Signal Transduction
T-Lymphocytes, Animals, Humans, Protein Tyrosine Phosphatases, Lymphocyte Activation, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |