
doi: 10.2741/a477 , 10.2741/bonomo
pmid: 10331993
Beta-lactamase inhibitors (clavulanic acid, tazobactam, and sulbactam) greatly enhance the therapeutic efficacy of their partner antibiotics (amoxacillin, ampicillin, piperacillin, and ticarcillin) against common enteric and non-enteric organisms possessing class A beta-lactamases. Unfortunately, the number of class A enzymes being discovered that are resistant to these combinations is increasingly rapidly. The TEM and SHV class A beta-lactamases resistant to inhibitors have point mutations in critical amino acids important for catalysis. Compared to the wild type beta-lactamase, inhibitor resistant enzymes are inefficient at hydrolyzing benzylpenicillin, aminopenicillins, and cephalosporins. Nevertheless, hyper-production of these enzymes resulting from mutations in the promoter region can confer substantial levels of resistance. Understanding the microbiologic and kinetic properties of these inhibitor resistant class A beta-lactamases can lead to the design of more potent beta-lactam compounds as well as more effective inhibitors.
Amino Acid Substitution, Drug Resistance, Microbial, Enzyme Inhibitors, beta-Lactamase Inhibitors, beta-Lactamases, Cephalosporins
Amino Acid Substitution, Drug Resistance, Microbial, Enzyme Inhibitors, beta-Lactamase Inhibitors, beta-Lactamases, Cephalosporins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
