Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Bioscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Bioscience
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperglycemia as a mechanism of pancreatic cancer metastasis

Authors: Wei, Li; Qingyong, Ma; Jiangbo, Liu; Liang, Han; Guodong, Ma; Han, Liu; Tao, Shan; +2 Authors

Hyperglycemia as a mechanism of pancreatic cancer metastasis

Abstract

As a vital step in the progression of cancer, metastasis poses the largest problem in cancer treatment and is the main cause of death of cancer patients. In pancreatic cancer, almost 80% of patients have locally deteriorated or metastatic disease and thus are not appropriate for resection at the time of diagnosis. Due to the high rate of incidence and mortality, it is crucial to study the molecular mechanisms of metastasis to clarify therapeutic targets to hinder the spread of cancer. Diabetes mellitus has long been considered a potential risk factor for pancreatic cancer. In this review, we comprehensively describe the role of hyperglycemia in governing critical steps of the metastatic process. In particular, we focus on the hyperglycemia-dependent aspects of the Epithelial-Mesenchymal Transition (EMT) and vascular dysfunction. Furthermore, we discuss how hyperglycemia-related production of reactive oxygen species (ROS) may play an important role in these two processes. A deep understanding of metastasis mechanisms will identify novel targets for therapeutic intervention.

Related Organizations
Keywords

Pancreatic Neoplasms, Oxidative Stress, Epithelial-Mesenchymal Transition, Hyperglycemia, Diabetes Mellitus, Humans, Neoplasm Metastasis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research