
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script><p>This thesis establishes new results concerning the proof-theoretic strength of two classic theorems of Ring Theory relating to factorization in integral domains.<br></p><p>The first theorem asserts that if every irreducible is a prime, then every element has at most one decomposition into irreducibles; the second states that well-foundedness of divisibility implies the existence of an irreducible factorization for each element.<br></p><p>After introductions to the Algebra framework used and Reverse Mathematics, we show that the first theorem is provable in the base system of Second Order Arithmetic RCA0, while the other is equivalent over RCA0 to the system ACA0.</p>
Algebra, Reverse mathematics, Commutative algebra
Algebra, Reverse mathematics, Commutative algebra
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
