
doi: 10.26637/mjm101/001
Networks are one of the basic structures in many physical phenomena pertaining to engineering applications. As a network can be represented by a graph which is isomorphic to its adjacency matrix, the study of analysis of networks involving rate of change with respect to time reduces to the study of graph differential equations or equivalently matrix differential equations. In this paper, we develop the basic infrastructure to study the IVP of a graph differential equation and the corresponding matrix differential equation. Criteria are obtained to guarantee the existence of a solution and an iterative technique for convergence to the solution of a matrix differential equation is developed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
