
—Experiments and theoretical analysis of influence of temperature on polarization mode dispersion (PMD) in single mode optical fibers and cables are presented. Forces generated by contracting buffer create optical birefringence and increase fiber PMD at low temperatures. Single mode fiber (SMF) in 0.9 mm polymeric tight-buffer can exhibit an extra component of PMD exceeding 0.3 ps/√km in such conditions. On the other hand, tight-buffered spun nonzero dispersion-shifted fibers (NZDSF) and optical units with stranded single mode fibers have showed good stability of PMD over wide range of temperatures. This is due to presence of circular strain in the core, blocking accumulation of mechanically induced birefringence.
optical fiber cable, birefringence, tight-buffered fiber, Telecommunication, polarization mode dispersion, TK5101-6720, Information technology, environmental testing, T58.5-58.64, single mode optical fiber
optical fiber cable, birefringence, tight-buffered fiber, Telecommunication, polarization mode dispersion, TK5101-6720, Information technology, environmental testing, T58.5-58.64, single mode optical fiber
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
