Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuzzy Systems and So...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuzzy Systems and Soft Computing
Article . 2022 . Peer-reviewed
Data sources: Crossref
addClaim

Application of OWL ontologies and LSTM networks in searching for anomalies of time series

Применение OWL-онтологий и LSTM-сетей в задачах поиска аномалий временных рядов

Application of OWL ontologies and LSTM networks in searching for anomalies of time series

Abstract

В статье описаны результаты разработки алгоритма обнаружения аномалий временных рядов с учетом особенностей предметной области. Алгоритм предполагает нахождение прогноза временных рядов с использованием LSTM-сетей, обнаружение аномалий по полученному прогнозу, фильтрацию найденных аномалий в соответствии с возможными отклонениями значений временного ряда от тренда, отраженными в онтологии, и логический вывод результатов поиска с использованием набора SWRL-правил. Эффективность предложенного подхода подтверждена рядом экспериментов, проводимом на бенчмарке данных по работе нефтяных вышек. The paper describes the results of the development of an algorithm for detecting anomalies in time series, taking into account the specifics of the subject area. The algorithm involves finding a time series forecast using LSTM networks, detecting anomalies based on the obtained forecast, filtering the found anomalies in accordance with possible deviations of the time series values from the trend reflected in the ontology, and logically deriving search results using a set of SWRL rules. The effectiveness of the proposed approach has been confirmed by a number of experiments conducted on the benchmark of data on the operation of oil rigs.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold