Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.26434/chemr...
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amphiphilic structured PEG derivatives suppressing protein thermal aggregation at extremely low molecular ratio

Authors: Adam Wawro; Takahiro Muraoka; Wijak Yospanya; Mayu Kawame; Yudai Nakagawa; Mihoko Ui; Pawel Antonik; +3 Authors

Amphiphilic structured PEG derivatives suppressing protein thermal aggregation at extremely low molecular ratio

Abstract

Amphiphilic structured PEG derivatives consisting of octa(ethylene glycol) chains connected with aromatic vertices inhibited the thermally-induced lysozyme aggregation even when present at below 0.1 mM concentration. This concentration range is close to a 1:1 molar ratio with the additive and lysozyme, and was completely inaccessible for previously reported stabilizers. The possible mechanisms of the stabilizing actions revealed that the PEG-based amphiphiles do not in fact prevent aggregation at the molecular level, as assumed before, but rather prevent macroscopic precipitation of the denatured protein molecules and enable dissolution of them to the native, folded state at ambient temperature. The stabilizers do not interact with properly folded native lysozyme and therefore do not affect its natural catalytic properties, indicating a potential for practical use in protein-based therapeutics.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid