Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UNSWorks
Doctoral thesis . 2004
License: CC BY NC ND
https://dx.doi.org/10.26190/un...
Doctoral thesis . 2004
License: CC BY NC ND
Data sources: Datacite
DBLP
Doctoral thesis
Data sources: DBLP
versions View all 2 versions
addClaim

Bridging semantic gap: learning and integrating semantics for content-based retrieval

Authors: Lim, Joo Hwee;

Bridging semantic gap: learning and integrating semantics for content-based retrieval

Abstract

Digital cameras have entered ordinary homes and produced^incredibly large number of photos. As a typical example of broad image domain, unconstrained consumer photos vary significantly. Unlike professional or domain-specific images, the objects in the photos are ill-posed, occluded, and cluttered with poor lighting, focus, and exposure. Content-based image retrieval research has yet to bridge the semantic gap between computable low-level information and high-level user interpretation. In this thesis, we address the issue of semantic gap with a structured learning framework to allow modular extraction of visual semantics. Semantic image regions (e.g. face, building, sky etc) are learned statistically, detected directly from image without segmentation, reconciled across multiple scales, and aggregated spatially to form compact semantic index. To circumvent the ambiguity and subjectivity in a query, a new query method that allows spatial arrangement of visual semantics is proposed. A query is represented as a disjunctive normal form of visual query terms and processed using fuzzy set operators. A drawback of supervised learning is the manual labeling of regions as training samples. In this thesis, a new learning framework to discover local semantic patterns and to generate their samples for training with minimal human intervention has been developed. The discovered patterns can be visualized and used in semantic indexing. In addition, three new class-based indexing schemes are explored. The winnertake- all scheme supports class-based image retrieval. The class relative scheme and the local classification scheme compute inter-class memberships and local class patterns as indexes for similarity matching respectively. A Bayesian formulation is proposed to unify local and global indexes in image comparison and ranking that resulted in superior image retrieval performance over those of single indexes. Query-by-example experiments on 2400 consumer photos with 16 semantic queries show that the proposed approaches have significantly better (18% to 55%) average precisions than a high-dimension feature fusion approach. The thesis has paved two promising research directions, namely the semantics design approach and the semantics discovery approach. They form elegant dual frameworks that exploits pattern classifiers in learning and integrating local and global image semantics.

Country
Australia
Related Organizations
Keywords

Image processing., Image processing, Database design., Information retrieval., Information retrieval, Semantics., Database design, Semantics, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green