Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UNSWorks
Doctoral thesis . 2022
License: CC BY
https://dx.doi.org/10.26190/un...
Doctoral thesis . 2022
License: CC BY
Data sources: Datacite
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topics in computational statistics

Authors: Yang, Yu;

Topics in computational statistics

Abstract

Research in computational statistics develops numerically efficient methods to estimate statistical models, with Monte Carlo algorithms a subset of such methods. This thesis develops novel Monte Carlo methods to solve three important problems in Bayesian statistics. For many complex models, it is prohibitively expensive to run simulation methods such as Markov chain Monte Carlo (MCMC) on the model directly when the likelihood function includes an intractable term or is computationally challenging in some other way. The first two topics investigate models having such likelihoods. The third topic proposes a novel model to solve a popular question in causal inference, which requires solving a computationally challenging problem. The first application is to symbolic data analysis, where classical data are summarised and represented as symbolic objects. The likelihood function of such aggregated-level data is often intractable as it usually includes a high dimensional integral with large exponents. Bayesian inference on symbolic data is carried out in the thesis by using a pseudo-marginal method, which replaces the likelihood function with its unbiased estimate. The second application is to doubly intractable models, where the likelihood includes an intractable normalising constant. The pseudo-marginal method is combined with the introduction of an auxiliary variable to obtain simulation consistent inference. The proposed algorithm offers a generic solution to a wider range of problems, where the existing methods are often impractical as the assumptions required for their application do not hold. The last application is to causal inference using Bayesian additive regression trees (BART), a non-parametric Bayesian regression technique. The likelihood function is complex as it is based on a sum of trees whose structures change dynamically with the MCMC iterates. An extension to BART is developed to estimate the heterogeneous treatment effect, aiming to overcome the regularisation-induced confounding issue which is often observed in the direct application of BART in causal inference.

Related Organizations
Keywords

anzsrc-for: 490503 Computational statistics, anzsrc-for: 380202 Econometric and statistical methods, 330, symbolic data analysis, 380202 Econometric and statistical methods, causal inference, doubly intractable models, 004, pseudo-marginal methods, 490503 Computational statistics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green