
doi: 10.26076/fa81-aa0a
JavaScript Object Notation (JSON) is a format for representing data. In this thesis we show how to capture the history of changes to a JSON document. Capturing the history is important in many applications, where not only the current version of a document is required, but all the previous versions. Conceptually the history can be thought of as a sequence of non-temporal JSON documents, one for each instant of time. Each document in the sequence is called a snapshot. Since changes to a document are few and infrequent, the sequence of snapshots largely duplicates a document across many time instants, so the snapshot model is (wildly) inefficient in terms of space needed to represent the history and time taken to navigate within it. A more efficient representation can be achieved by “gluing" the snapshots together to form a temporal model. Data that remains unchanged across snapshots is represented only once in a temporal model. But we show that the temporal model is not a JSON document, and it is important to represent a history as JSON to ensure compatibility with web services and scripting languages that use JSON. So we describe a representational model that captures the information in a temporal model. We implement the representational model in Python and extensively experiment with the model. Our experiments show that the model is efficient.
web services, Computer Sciences, JSON, versioning, 005, temporal databases
web services, Computer Sciences, JSON, versioning, 005, temporal databases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
