
doi: 10.26076/5434-30d3
In this dissertation, three essays are presented that apply recent advances in time-series methods to the analysis of inflation and stock market index data for Taiwan. Specifically, ARCH and GARCH methodologies are used to investigate claims of increased volatility in economic time-series data since 1980. In the first essay, analysis that accounts for structural change reveals that the fundamental relationship between inflation and its variability was severed by policies implemented during economic liberalization in Taiwan in the early 1980s. Furthermore, if residuals are corrected for serial correlation, evidence in favor of ARCH effects is weakened. In the second essay, dynamic linkages between daily stock returns and daily trading volume are explored. Both linear and nonlinear dependence are evaluated using Granger causality tests and GARCH modelling. Results suggest significant unidirectional Granger causality from stock returns to trading volume. In the third essay, comparative analysis of the frequency structure of the Taiwan stock index data is conducted using daily, weekly, and monthly data. Results demonstrate that the relationship between mean return and its conditional standard deviation is positive and significant only for high-frequency daily data.
Generalized Autoregressive Conditional Heteroskedasticity, GARCH, Autoregressive Conditional Heteroskedasticity, 330, Economics, Taiwan's Time-series data, Taiwan's Time-Series Data, Modelling, ARCH
Generalized Autoregressive Conditional Heteroskedasticity, GARCH, Autoregressive Conditional Heteroskedasticity, 330, Economics, Taiwan's Time-series data, Taiwan's Time-Series Data, Modelling, ARCH
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
