Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using mathematical techniques to leverage domain knowledge in image analysis for earth science

Authors: Ver Hoef, Lander, author; Adams, Henry, advisor; King, Emily J., advisor; Hagman, Jess Ellis, committee member; Ebert-Uphoff, Imme, committee member;

Using mathematical techniques to leverage domain knowledge in image analysis for earth science

Abstract

When presented with the power of modern machine learning techniques, there is a belief that we can simply let these algorithms loose on the data and see what they can find, unconstrained by human choice or bias. While such approaches can be useful, they are (of course) not fully free of bias or choice. Moreover, by utilizing the deep store of knowledge built up by scientific domains over decades or centuries, we can make architectural choices in our machine learning algorithms that focus the learning on features that we already know are important and informative, leading to more efficient, explainable, and interpretable methods. In this work, we present three examples of this approach. In the first project, to make use of the knowledge that texture is an important attribute of clouds, we use tools from topological data analysis focusing on the texture of satellite imagery, which leads to an effective and highly interpretable classifier of mesoscale cloud organization. This project resulted in a paper that has been published as a journal article. In the second project, we compare a rotationally invariant convolutional neural network against a conventional CNN both with and without data augmentation in their performance and behaviors on the task of predicting the major and minor axes lengths of storms in forecast data. Finally, in the third project, we explore three different techniques from harmonic analysis to enhance the signature of gravity waves in satellite imagery.

Keywords

topological data analysis, machine learning, convolutional neural networks, harmonic analysis, gravity waves, satellite data, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities