Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Metabolic engineering interventions for sustainable 2,3-butanediol production in gas fermenting Clostridium autoethanogenum

Authors: Ghadermazi, Parsa, author; Chan, Siu Hung, advisor; Wrighton, Kelly, committee member; Reisfeld, Brad, committee member;

Metabolic engineering interventions for sustainable 2,3-butanediol production in gas fermenting Clostridium autoethanogenum

Abstract

Gas fermentation provides a promising platform to turn low-cost and readily available single-carbon waste gases into commodity chemicals such as 2,3-butanediol. Clostridium autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we leveraged on constraints-based stoichiometric modeling and kinetic ensemble modeling of the C. autoethanogenum metabolic network to provide a systematic in silico analysis of metabolic engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in dissipated CO2. Our analysis allowed us to identify and to assess comparatively the expected performances for a wide range of single, double, and triple interventions. Our analysis managed to individuate bottleneck reactions in relevant metabolic pathways when suggesting intervening strategies. Besides recapitulating intuitive and/or previously attempted genetic modifications, our analysis neatly outlined that the interventions - at least partially - impinging on by-products branching from acetyl-CoA and pyruvate (acetate, ethanol, amino acids) offer valuable alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-butanediol.

Zip file contains supplementary files 1 and 2.

Country
United States
Keywords

C. autoethanogenum, metabolic engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities