Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Essays on Experimental Economics

Authors: Daniel John Woods;

Essays on Experimental Economics

Abstract

This thesis contains three chapters, each of which covers a different topic in experimental economics.The first chapter investigates power and power analysis in economics experiments. Power is the probability of detecting an effect when a true effect exists, which is an important but under-considered concept in empirical research. Power analysis is the process of selecting the number of observations in order to avoid issues with low power. However, it is often not clear ex-ante what the required parameters for a power analysis, like the effect size and standard deviation, should be. This chapter considers the use of Quantal Choice/Response (QR) simulations for ex-ante power analysis, as it maps related data-sets into predictions for novel environments. The QR can also guide optimal design decisions, both ex-ante as well as ex-post for conceptual replication studies. This chapter demonstrates QR simulations on a wide variety of applications related to power analysis and experimental design.The second chapter considers a question of interest to computer scientists, information technology and security professionals. How do people distribute defenses over a directed network attack graph, where they must defend a critical node? Decision-makers are often subject to behavioral biases that cause them to make sub-optimal defense decisions. Non-linear probability weightingis one bias that may lead to sub-optimal decision-making in this environment. An experimental test provides support for this conjecture, and also other empirically important biases such as naive diversification and preferences over the spatial timing of the revelation of an overall successful defense. The third chapter analyzes how individuals resolve an exploration versus exploitation trade-off in a laboratory experiment. The experiment implements the single-agent exponential bandit model. The experiment finds that subjects respond in the predicted direction to changes in the prior belief, safe action, and discount factor. However, subjects also typically explore less than predicted. A structural model that incorporates risk preferences, base rate neglect/conservatism, and non-linear probability weighting explains the empirical findings well.

Keywords

Economics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?