Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Conference object . 1999
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 1999
Data sources: IRIS Cnr
https://doi.org/10.2523/52806-...
Article . 1999 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.2118/52806-...
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compression of Downhole Data

Authors: G Bernasconi; V Rampa; F Abramo; L Bertelli;

Compression of Downhole Data

Abstract

Abstract Measurement-While-Drilling (MWD) services efficiently support drilling decisions, therefore these tools are becoming a de-facto standard on well sites. Currently, the main drawback of MWD equipment is the absence of a high bit-rate telemetry system to enable real-time activities. This problem may be solved by employing either an off-line solution, with limited memory capacity up to few hundreds of Mbytes; or an on-line solution with telemetry at a very low bit-rate (tens of bits/sec). However, following the off-line approach with standard acquisition parameters, the internal storage memory would be filled up in just a few hours at high acquisition rates. On the contrary, with the on-line solution only a small portion of the acquired signals (or only alarm information about potentially dangerous events) can be transmitted in real-time to the surface by using mud-pulse telemetry. In this paper, we present a lossy data compression algorithm based on the wavelet transform (WT), which is suitable for downhole implementation and may be successfully applied to both on-line and off-line solutions. Numerical tests based on real field data achieve compression ratios up to 15:1 without noticeable signal degradation. This allows a significant increase in downhole time acquisition and in real-time information that can be transmitted through mud-pulse telemetry.

Keywords

MWD method, Data compression, Data analysis, Drilling, Wavelet transformation, Drill bit, Burr

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!