Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2514/6.2024...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC SA
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational Fluid Dynamics on Quantum Computers

Authors: Syamlal, Madhava; Copen, Carter; Takahashi, Masashi; Hall, Benjamin;

Computational Fluid Dynamics on Quantum Computers

Abstract

QubitSolve is working on a quantum solution for computational fluid dynamics (CFD). We have created a variational quantum CFD (VQCFD) algorithm and a 2D Software Prototype based on it. By testing the Software Prototype on a quantum simulator, we demonstrate that the partial differential equations that underlie CFD can be solved using quantum computers. We aim to determine whether a quantum advantage can be achieved with VQCFD. To do this, we compare the performance of VQCFD with classical CFD using performance models. The quantum performance model uses data from VQCFD circuits run on quantum computers. We define a key performance parameter Q_{5E7}, the ratio of quantum to classical simulation time for a size relevant to industrial simulations. Given the current state of the Software Prototype and the limited computing resources available, we can only estimate an upper bound for Q_{5E7}. While the estimated Q_{5E7} shows that the algorithm's implementation must improve significantly, we have identified several innovative techniques that could reduce it sufficiently to achieve a quantum advantage. In the next phase of development, we will develop a 3D minimum-viable product and implement those techniques.

14 pages, 5 figures,2 tables, submitted to 2024 Aviation Forum, Las Vegas, NV, July 29, 2024

Keywords

Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green