Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compound-compressible nozzle flow

Authors: A. Bernstein; W. H. Heiser; C. Hevenor;

Compound-compressible nozzle flow

Abstract

A one-dimensional theory based upon fundamental flow relationships is presented for analyzing the behavior of one or more gas streams flowing through a single nozzle. This compound-compressible flow theory shows that the behavior of each stream is influenced by the presence of the other streams. The theory also shows that the behavior of compound-compressible flow is predicted by determining how changing conditions at the nozzle exit plane affect conditions within the nozzle. It is found that, when choking of the compound-compressible flow nozzle occurs, an interesting phenomenon exists: The compound-compressible flow is shown to be choked at the nozzle throat, although the individual stream Mach numbers there are not equal to one. This phenomenon is verified by a wave analysis which shows that, when choking occurs, a pressure wave cannot be propagated upstream to the nozzle throat even though some of the individual streams have Mach numbers less than one. Algebraic methods based on this compound-compressible flow theory are used to demonstrate the usefulness of this approach in computing the behavior of compound-compressible flow nozzles. A comparison of the compound-compressible flow theory with three-dimensional computer calculations shows that the effects of streamline curvature on nozzle behavior can be disregarded for many practical nozzle configurations. Test results from a typical two-flow nozzle show excellent agreement with the predictions from the theory.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!