Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
AIAA Journal
Article . 1964 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

A transonic experiment at hypersonic speed

Authors: Traugott, S. C.;

A transonic experiment at hypersonic speed

Abstract

Cylindrically blunted wedges were tested in a hotshot tunnel at various angles of attack at a Maeh number of about twenty. The geometry was so arranged that the sonic point occurred either on the nose or much further downstream on the corner terminating the body, depending on angle of attack. Both surface pressures and shock shapes were obtained over the range in incidence associated with this large change in sonic point body thickness. The rearward shift of the sonic point was found to have very little effect on the flow for a relatively slender blunted wedge. The role of asymmetry in the stagnation region was explored by comparing a nonslender blunted wedge at small incidence to the slender wedge at large incidence. Coordinates are discussed which allow representation of both shock shapes and surface pressures of small afterbody flow deflection theory together with blast wave theory. In these coordinates, pressure and shock from the present large flow deflection experiments on the slender wedge (up to loss of asymptotic wedge flow) also correlate, independent of the position of the sonic point.

Keywords

fluid mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!