
doi: 10.2514/2.6466
Application of highly conductive coatings to contacting surfaces is a commonly employed method to enhance thermal contact conductance. In many applications it is often necessary to apply an intermediate coating such that the conductive coating may be applied to a nonadhering substrate. In these instances, it is desirable to predict the effect that the intermediate and final coatings have on the spreading resistance. A solution for computing the thermal spreading resistance of a planar circular contact on a doubly coated substrate is presented. Also, a model is developed to compute the contact conductance between a bare substrate and a coated substrate. Comparisons are made with data obtained in the literature for which no analytical model was available. Solution of the governing equations and numerical computation of the spreading resistance were obtained using computer algebra systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
