Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
AIAA Journal
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flutter and Stall Flutter of a Rectangular Wing in a Wind Tunnel

Authors: Norizham, Abdul Razak; Andrianne, Thomas; Dimitriadis, Grigorios;

Flutter and Stall Flutter of a Rectangular Wing in a Wind Tunnel

Abstract

The aeroelastic behavior of a rectangular wing with pitch and plunge degrees of freedom was observed experimentally using pressure, acceleration, and particle image velocimetry measurements. The wing was set at different static angles of attack and wind-tunnel airspeeds. The wing’s dynamic behavior was governed by a twoparameter bifurcation from steady to limit cycle oscillations, with the two parameters being the airspeed and the static angle of attack. At the lowest static angle, the wing underwent a classical flutter phenomenon that was transformed into a supercriticalHopf bifurcation at higher angles. The latterwas combinedwith a fold bifurcation at intermediate angles of attack. All limit cycle oscillations observed were either low-amplitude oscillations with timevarying amplitude or high-amplitude oscillations with nearly steady amplitude. They were caused by two different types of dynamic stall phenomena. During low-amplitude limit cycle oscillations the periodically stalled flow covered only the rear part of the wing. During high-amplitude limit cycle oscillations, trailing-edge and leading-edge separation occurred. Trailing-edge separation was characterized by a significant amount of unsteadiness, varying visibly from cycle to cycle. The occurrence of leading-edge separation was muchmore regular and had the tendency to stabilize the amplitude of the limit cycle oscillation motion.

Related Organizations
Keywords

Aerospace & aeronautics engineering, Bifurcation, Aeroelasticity, Limit Cycle Oscillation, Ingénierie aérospatiale, Stall flutter, Engineering, computing & technology, Ingénierie, informatique & technologie

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!