Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Broadband Noise Due to Rotor-Wake/Rotor Interaction in Contra-Rotating Open Rotors

Authors: Blandeau, Vincent P.; Joseph, Phillip F.;

Broadband Noise Due to Rotor-Wake/Rotor Interaction in Contra-Rotating Open Rotors

Abstract

A semi-analytical model for the prediction of the broadband noise due to the interaction between turbulent rotor wakesandarotorincontra-rotatingopenrotorsispresented.Theunsteadyloadingoftherearrotorismodeledusing classicalisolated flat-platetheory.Striptheoryisusedtotreatthespanwisevariationsofaerodynamicquantitiesand blade geometry. The turbulent wake is assumed to be homogeneous and isotropic turbulence that is modulated by a train of wake profiles. The model is presented in detail and insight into its modal behavior is provided. A parameter study is conducted to investigate the effects of blade number, rotor–rotor gap and rotor speeds on broadband noise emissions due to rotor–wake/rotor interaction in contra-rotating open rotors. Scaling laws for sound power levels have been established analytically and show good agreement with the results of the parameter study. Nomenclature a = empirical wake parameter Bi = blade number of theith rotor bW = half-wake width, m Cd = drag coefficient of front airfoils c0 = speed of sound, m:s � 1 ci = blade chord, m cl

Country
United Kingdom
Related Organizations
Keywords

620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!