Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsteady Effects in Axial Compressors: A Multistage Simulation

Authors: Montomoli, F; Naylor, E; Hodson, HP; Lapworth, L;

Unsteady Effects in Axial Compressors: A Multistage Simulation

Abstract

This work presents a numerical simulation of a four-stage axial compressor with cantilevered stators and repeating stages. Two simulations have been accomplished, namely, unsteady with sliding plane and steady with mixing plane, over a wide range of operating conditions. The solver is an unsteady Reynolds-averaged Navier–Stokes code with the Spalart–Allmaras turbulent model. It has been found that the greatest effect of unsteadiness is near the end walls. The stall point for the unsteady simulation is 40% closer to the experimental data when compared with the steady one with mixing planes. This is due to the recovery and segregation of the rotor tip vortex near the casing, which has a stabilizing effect in terms of stall limit. The unsteady simulation is able to reproduce total pressure loss experimentally observed near the hub at the stator exit but not found in the steady simulation. A previous experimental campaign suggested this loss was generated by the wakes of upstream inlet guide vanes propagating...

Country
United Kingdom
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?