
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>A Bayesian network is a directed acyclic graph that represents statistical dependencies between variables of a joint probability distribution. A fundamental task in data science is to learn a Bayesian network from observed data. Polytree Learning is the problem of learning an optimal Bayesian network that fulfills the additional property that its underlying undirected graph is a forest. In this work, we revisit the complexity of Polytree Learning. We show that Polytree Learning can be solved in single-exponential FPT time for the number of variables. Moreover, we consider the influence of d, the number of variables that might receive a nonempty parent set in the final DAG on the complexity of Polytree Learning. We show that Polytree Learning is presumably not fixed-parameter tractable for d, unlike Bayesian network learning which is fixed-parameter tractable for d. Finally, we show that if d and the maximum parent set size are bounded, then we can obtain efficient algorithms.
FOS: Computer and information sciences, Computer Science - Machine Learning, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
