Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.ijcai.or...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.24963/ijcai...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prophet Inequalities for Bayesian Persuasion

Authors: Rann Smorodinsky; Niklas Hahn; Martin Hoefer;

Prophet Inequalities for Bayesian Persuasion

Abstract

We study an information-structure design problem (i.e., a Bayesian persuasion problem) in an online scenario. Inspired by the classic gambler's problem, consider a set of candidates who arrive sequentially and are evaluated by one agent (the sender). This agent learns the value from hiring the candidate to herself as well as the value to another agent, the receiver. The sender provides a signal to the receiver who, in turn, makes an irrevocable decision on whether or not to hire the candidate. A-priori, for each agent the distribution of valuation is independent across candidates but may not be identical. We design good online signaling schemes for the sender. To assess the performance, we compare the expected utility to that of an optimal offline scheme by a prophet sender who knows all candidate realizations in advance. We show an optimal prophet inequality for online Bayesian persuasion, with a 1/2-approximation when the instance satisfies a "satisfactory-status-quo" assumption. Without this assumption, there are instances without any finite approximation factor. We extend the results to combinatorial domains and obtain prophet inequalities for matching with multiple hires and multiple receivers.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze