
Explanations of machine learning (ML) predictions are of fundamental importance in different settings. Moreover, explanations should be succinct, to enable easy understanding by humans. Decision trees represent an often used approach for developing explainable ML models, motivated by the natural mapping between decision tree paths and rules. Clearly, smaller trees correlate well with smaller rules, and so one challenge is to devise solutions for computing smallest size decision trees given training data. Although simple to formulate, the computation of smallest size decision trees turns out to be an extremely challenging computational problem, for which no practical solutions are known. This paper develops a SAT-based model for computing smallest-size decision trees given training data. In sharp contrast with past work, the proposed SAT model is shown to scale for publicly available datasets of practical interest.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
