Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Журнал органічної та...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The preparative synthetic approach to 4-(trifluoromethoxy)piperidine and 4-(trifluoromethoxymethyl)piperidine

Authors: Ivan G. Logvinenko; Violetta G. Dolovanyuk; Ivan S. Kondratov;

The preparative synthetic approach to 4-(trifluoromethoxy)piperidine and 4-(trifluoromethoxymethyl)piperidine

Abstract

Aim. To develop a convenient synthetic approach for the preparation of multigram amounts of 4-(trifluoromethoxy)-piperidine and 4-(trifluoromethoxymethyl)piperidine – promising building blocks for medicinal chemistry.Results and discussion. 4-(Trifluoromethoxy)piperidine (8.4 g) and 4-(trifluoromethoxymethyl)piperidine (12.9 g) were synthesized in 5 stages starting from 4-hydroxypiperidine (the overall yield 40 %) and 4-(hydroxymethyl)piperidine (the overall yield 13.5 %), respectively.Experimental part. The first stage of the synthetic strategy was acylation of 4-hydroxypiperidine with benzoyl chloride. N-benzoyl-4-hydroxypiperidine obtained was transformed to N-benzoyl-4-(trifluoromethoxy)piperidine in two stages using the Hiyama method (the synthesis of the corresponding S-methyl xanthate with the subsequent desulfurization/fluorination using N-bromosuccinimide and Olah’s reagent). Then the N-benzoyl group was reduced to benzyl one, which was removed using 1-chloroethyl chloroformate. The similar approach was applied to the synthesis of 4-(trifluoromethoxymethyl)piperidine starting from 4-(hydroxymethyl)piperidine. The structure and composition of the compounds synthesized were confrmed by 1Н, 13C and 19F NMR spectroscopy,mass-spectrometry and elemental analysis.Conclusions. The synthetic approach developed is a convenient method for the multigram preparation of4-(trifluoromethoxy)piperidine and 4-(trifluoromethoxymethyl)piperidine and can be used for the synthesis of other secondary amines containing the CF3O-group.Key words: fluorination; trifluoromethoxy group; xanthate; piperidine; protection group

Keywords

xanthate, Chemistry, protection group, fluorination, trifluoromethoxy group, piperidine, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold