Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Журнал органічної та...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The study of calixarenes complexation with phenols by RP HPLC

Authors: Kalchenko, O. I.; Cherenok, S. O.; Solovyov, A. V.; Suikov, S. Yu.; Kalchenko, V. I.;

The study of calixarenes complexation with phenols by RP HPLC

Abstract

The Host-Guest complexation of octakis(diphenoxyphosphoryloxy)tetramethylcalix[4]resorcinarene, 5,17-bis-(N-tolyliminomethyl)-25,27-dipropoxycalix[4]arene and 5,11,17,23-tetrakis(diisopropoxyphosphonyl)-25,26,27,28-tetrapropoxycalix[4]arene with a series of 11 phenols (phenol, p-fluorophenol, p-chlorophenol, p-bromophenol, pyrogallol, p-cresol, p-aminophenol, p-nitrophenol, salicylic aldehyde, guaiacol and veratrole) has been studied by the high-performance liquid chromatography (RP HPLC) method. Chromatographic characteristics and log P of industrial phenols have been determined. Using the relationship of the phenol retention factor k’ vs the calixarene concentration in the mobile phase the stability constants of the supramolecular complexes K A (29-331 M -1 ) have been determined. The stability constants of the calixarene complexes show that the Host-Guest interaction strongly depends on the nature of the substituents in the Host and Guest molecules. Calixresorcinarene functionalized by diphenoxyphosphoryl groups and calixarene containing tolyliminomethyl groups formed more stable complexes with some phenols compared to calixarene functionalized by diisopropoxyphosphonyl groups. In accordance with the molecular modeling data the complexation does not change the C2v flattened-cone conformation of the calixarene skeleton. The Host-Guest complexes are stabilized by the intermolecular hydrogen bonds of phenolic OH groups with oxygen atoms of P = O groups at the upper rim, and OH groups at the lower rim of the macrocycle. Hydrophobic interactions also participate in the complexation.

Keywords

UDC 547.03+547.562, каликсарены; фенолы; комплексы включения; константы связывания; молекулярное моделирование, УДК 547.03+547.562, Calixarenes; phenols; inclusion complexes; binding constants; molecular modeling, каліксарени; феноли; комплекси включення; константи зв’язування; молекулярне моделювання

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold