Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.witpress....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.2495/sc1207...
Article . 2012 . Peer-reviewed
Data sources: Crossref
ZENODO
Conference object . 2012
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the representativeness of thermal comfort in outdoor spaces

Authors: Cocci Grifoni R.; Pierantozzi M.; Tascini S.; Passerini G.;

Assessing the representativeness of thermal comfort in outdoor spaces

Abstract

This paper presents preliminary findings of an outdoor thermal comfort study conducted in an urban area to evaluate the representative Predicted Mean Vote index. Thermal comfort in outdoor urban spaces is often faced with the task of using large amounts of data that yields meaningful information concerning the thermal sensation. It is essential to interpret correctly meteorological and thermal comfort data. In particular, it is important to interpret data using an appropriate statistical analysis, and the analysis of thermal comfort presupposes a synthesis of information derived from a series of temporal data. It is indispensable to deal with realistic data and an actual day should be considered, but the widely used average day is not an actual day. On the contrary, the representative day is made of the actual data of the day, in the period considered, where the sum of the mean-square differences among its monitored quantities, averaged within each hour, and the same quantities for all other days at the same hour, is minimised. The goal of this research is to assess the representativeness of the thermal comfort indices provided using a representative day technique. Specifically, a new tool has been developed using a powerful and useful environment for symbolic and numerical computing and data visualization such as Wolfram MathematicaTM, aiming at linking information computed by a bio-climate model to the representative day technique. The possibility of assessing the diurnal variation of PMV thermal comfort index by introducing the Representative Day technique has been evaluated in order to gather information on the correlation between thermal comfort and meteorological parameters. A case study has been analysed in order to improve the microclimate in an outdoor space located in a typical Mediterranean area and a comparison with CFD code, namely ENVI-MET, has been reported. This technique can prove to be a very

Country
Italy
Keywords

Outdoor thermal comfort; Predicted mean vote; Predicted percentage of dissatisfied; Representative day; Thermo fluid dynamic analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
bronze