<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.24920/03476
pmid: 30266107
Objective To evaluate senile plaque formation and compare the sensitivity of three different β-amyloid (Aβ) labeling methods (antibody staining, Gallyas silver staining, and thioflavin-S staining) to detect Aβ deposition.Methods APPswe/PSEN1dE9 transgenic mice (APP/PS1) of different ages were used to examine spatiotemporal changes in Aβ plaque deposition. Antibody staining, Gallyas silver staining, and thioflavin-S staining were used to detect Aβ plaque deposition in the same brain region of adjacent slices from model mice, and the results were compared.Results With aging, Aβ plaques first appeared in the cortex and then the deposition increased throughout the whole brain. Significantly greater plaque deposition was detected by 6E10 antibody than that analyzed with Gallyas silver staining or thioflavin-S staining (P<0.05). Plaque deposition did not show significant difference between the APP/PS1 mice brains assayed with Gallyas silver staining and ones with thioflavin-S staining (P=0.0033).Conclusions The APP/PS1 mouse model of Alzheimer's disease could mimick the progress of Aβ plaques occurred in patients with Alzheimer's disease. Antibody detection of Aβ deposition may be more sensitive than chemical staining methods.
Male, Silver Staining, Amyloid beta-Peptides, Plaque, Amyloid, Hippocampus, Antibodies, Mice, Presenilin-1, Animals, Benzothiazoles
Male, Silver Staining, Amyloid beta-Peptides, Plaque, Amyloid, Hippocampus, Antibodies, Mice, Presenilin-1, Animals, Benzothiazoles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |