
In this work we use the method of lower and upper solutions to develop an iterative technique, which is not necessarily monotone, and combined with a fixed point theorem to prove the existence of at least one solution of nonlinear fractional differential equations with nonlocal boundary conditions of integral type.
Nonlinear boundary value problems for ordinary differential equations, fixed point, nonlocal conditions, fractional differential equations, Fractional ordinary differential equations, upper and lower solutions, Nonlocal and multipoint boundary value problems for ordinary differential equations, iterative technique
Nonlinear boundary value problems for ordinary differential equations, fixed point, nonlocal conditions, fractional differential equations, Fractional ordinary differential equations, upper and lower solutions, Nonlocal and multipoint boundary value problems for ordinary differential equations, iterative technique
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
