
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 1721.1/136200
In this paper, we study the classical and quantum equivariant cohomology of Nakajima quiver varieties for a general quiver Q. Using a geometric R-matrix formalism, we construct a Hopf algebra Y_Q, the Yangian of Q, acting on the cohomology of these varieties, and show several results about their basic structure theory. We prove a formula for quantum multiplication by divisors in terms of this Yangian action. The quantum connection can be identified with the trigonometric Casimir connection for Y_Q; equivalently, the divisor operators correspond to certain elements of Baxter subalgebras of Y_Q. A key role is played by geometric shift operators which can be identified with the quantum KZ difference connection. In the second part, we give an extended example of the general theory for moduli spaces of sheaves on C^2, framed at infinity. Here, the Yangian action is analyzed explicitly in terms of a free field realization; the corresponding R-matrix is closely related to the reflection operator in Liouville field theory. We show that divisor operators generate the quantum ring, which is identified with the full Baxter subalgebras. As a corollary of our construction, we obtain an action of the W-algebra W(gl(r)) on the equivariant cohomology of rank $r$ moduli spaces, which implies certain conjectures of Alday, Gaiotto, and Tachikawa.
277 pages, to appear in Asterisque
Mathematics - Algebraic Geometry, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Representation Theory (math.RT), Algebraic Geometry (math.AG), Mathematical Physics, Mathematics - Representation Theory
Mathematics - Algebraic Geometry, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Representation Theory (math.RT), Algebraic Geometry (math.AG), Mathematical Physics, Mathematics - Representation Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
