Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.23919/date5...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DeepCAM: A Fully CAM-based Inference Accelerator with Variable Hash Lengths for Energy-efficient Deep Neural Networks

Authors: Nguyen, Duy-Thanh; Bhattacharjee, Abhiroop; Moitra, Abhishek; Panda, Priyadarshini;

DeepCAM: A Fully CAM-based Inference Accelerator with Variable Hash Lengths for Energy-efficient Deep Neural Networks

Abstract

With ever increasing depth and width in deep neural networks to achieve state-of-the-art performance, deep learning computation has significantly grown, and dot-products remain dominant in overall computation time. Most prior works are built on conventional dot-product where weighted input summation is used to represent the neuron operation. However, another implementation of dot-product based on the notion of angles and magnitudes in the Euclidean space has attracted limited attention. This paper proposes DeepCAM, an inference accelerator built on two critical innovations to alleviate the computation time bottleneck of convolutional neural networks. The first innovation is an approximate dot-product built on computations in the Euclidean space that can replace addition and multiplication with simple bit-wise operations. The second innovation is a dynamic size content addressable memory-based (CAM-based) accelerator to perform bit-wise operations and accelerate the CNNs with a lower computation time. Our experiments on benchmark image recognition datasets demonstrate that DeepCAM is up to 523x and 3498x faster than Eyeriss and traditional CPUs like Intel Skylake, respectively. Furthermore, the energy consumed by our DeepCAM approach is 2.16x to 109x less compared to Eyeriss.

Accepted to Design, Automation and Test in Europe (DATE) Conference, 2023

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green