<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
With ever increasing depth and width in deep neural networks to achieve state-of-the-art performance, deep learning computation has significantly grown, and dot-products remain dominant in overall computation time. Most prior works are built on conventional dot-product where weighted input summation is used to represent the neuron operation. However, another implementation of dot-product based on the notion of angles and magnitudes in the Euclidean space has attracted limited attention. This paper proposes DeepCAM, an inference accelerator built on two critical innovations to alleviate the computation time bottleneck of convolutional neural networks. The first innovation is an approximate dot-product built on computations in the Euclidean space that can replace addition and multiplication with simple bit-wise operations. The second innovation is a dynamic size content addressable memory-based (CAM-based) accelerator to perform bit-wise operations and accelerate the CNNs with a lower computation time. Our experiments on benchmark image recognition datasets demonstrate that DeepCAM is up to 523x and 3498x faster than Eyeriss and traditional CPUs like Intel Skylake, respectively. Furthermore, the energy consumed by our DeepCAM approach is 2.16x to 109x less compared to Eyeriss.
Accepted to Design, Automation and Test in Europe (DATE) Conference, 2023
FOS: Computer and information sciences, Computer Science - Machine Learning, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |