Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.23919/apsip...
Article . 2018 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition

Authors: Longhao Yuan; Jianting Cao; Xuyang Zhao; Qiang Wu 0009; Qibin Zhao;

Higher-dimension Tensor Completion via Low-rank Tensor Ring Decomposition

Abstract

The problem of incomplete data is common in signal processing and machine learning. Tensor completion algorithms aim to recover the incomplete data from its partially observed entries. In this paper, taking advantages of high compressibility and flexibility of recently proposed tensor ring (TR) decomposition, we propose a new tensor completion approach named tensor ring weighted optimization (TR-WOPT). It finds the latent factors of the incomplete tensor by gradient descent algorithm, then the latent factors are employed to predict the missing entries of the tensor. We conduct various tensor completion experiments on synthetic data and real-world data. The simulation results show that TR-WOPT performs well in various high-dimension tensors. Furthermore, image completion results show that our proposed algorithm outperforms the state-of-the-art algorithms in many situations. Especially when the missing rate of the test images is high (e.g., over 0.9), the performance of our TR-WOPT is significantly better than the compared algorithms.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%