Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GEO-LEO e-docsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GEO-LEO e-docs
Book . 2009
Data sources: GEO-LEO e-docs
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Star-disc encounters in young star clusters

environmental effects on the evolution of protoplanetary discs
Authors: Olczak, Christoph;

Star-disc encounters in young star clusters

Abstract

According to current knowledge, star formation occurs preferentially in clustered environments. As a byproduct of the star formation process young stars are found to be surrounded by accretion discs that are potential birth places of planets and planetary systems. Located in the hosting cluster, these protoplanetary discs are potentially subject to stellar interactions. These interactions give rise to a fundamental question of clustered star formation: How far does the cluster environment affect the evolution of protoplanetary discs and the formation of planets? The question is addressed in the present investigation in terms of the effect of stellar encounters on stars and their disc in young clusters by combining numerical simulations of isolated star-disc encounters and stellar dynamics of young star clusters. The investigation is composed of three key aspects. First, simulations of a dynamical model of the Orion Nebula Cluster (ONC) show that disc destruction is dominated by encounters with high-mass stars that act as gravitational foci for the lower mass stars in the cluster centre. The massive stars are thus subject to repeated encounters which can lead to a total disc destruction ...

thesis

Keywords

ddc:523

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green