
pmid: 9051401
The concentration of glucose in the blood may soon be measured noninvasively, without puncturing the finger to obtain a drop of blood. Current prototype devices for this purpose require greater accuracy and miniaturization to be commercially viable. No such device has been approved for marketing by the U.S. Food and Drug Administration. The technology used for noninvasive blood glucose monitoring involves either radiation or fluid extraction. With radiation technology, an energy beam is 1) applied to the body, 2) modified proportionate to the concentration of glucose in the blood, and 3) measured. The blood glucose concentration is then calculated. With fluid extraction technology, a body fluid containing glucose in a concentration proportionate to the blood glucose concentration is extracted and measured. The blood glucose concentration is then calculated. The most promising technologies are 1) near-infrared light spectroscopy, 2) far-infrared radiation spectroscopy, 3) radio wave impedance, 4) optical rotation of polarized light, 5) fluid extraction from skin, and 6) interstitial fluid harvesting. Each method has features predictive of commercial viability, as well as technical problems to overcome.
Blood Glucose, Blood Glucose Self-Monitoring, Diabetes Mellitus, Humans
Blood Glucose, Blood Glucose Self-Monitoring, Diabetes Mellitus, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 164 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
