Powered by OpenAIRE graph
Found an issue? Give us feedback
Diabetesarrow_drop_down
Diabetes
Article . 1995 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 1995 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 1995
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel insulin secretagogue is a phosphodiesterase inhibitor

Authors: Mark D. Leibowitz; Edward J. Brady; Chhabi Biswas; Macro Conti; Richard Saperstein; Vincent C. Manganiello; Catherine A. Cullinan; +4 Authors

A novel insulin secretagogue is a phosphodiesterase inhibitor

Abstract

The arylpiperazine L-686,398 was described as an oral hypoglycemic agent and is shown to be an insulin secretagogue in vitro. The characteristics of its activity were similar to those of the incretin glucagon-like peptide I (GLP-I). We demonstrate that both the peptide and L-686,398 increase the accumulation of cAMP in isolated ob/ob mouse pancreatic islet cells, but by different mechanisms. Although GLP-I activates adenylate cyclase, the arylpiperazine has no effect on this enzyme or on the binding of 125I-labeled GLP-I to its receptor on RINm5F rat insulinoma cell membranes. However, L-686,398 inhibits the total cAMP phosphodiesterase (PDE) activity in homogenates of ob/ob mouse pancreatic islets with an EC50 of ∼ 50 μmol/l. To determine the mechanism of PDE inhibition by the arylpiperazine and to examine its specificity, we studied the kinetics of arylpiperazine inhibition of two recombinant PDEs. The arylpiperazine is a competitive inhibitor of both a human heart type III PDE and a rat type IV-D PDE. Inhibition of the type III and IV isozymes are characterized by Ki values of 27 and 5 μmol/l, respectively. Although not extremely potent, the arylpiperazine does exhibit modest selectivity between these PDEs. The observation that L-686,398 acts as a PDE inhibitor suggests that exploration for β-cell-specific PDE isoforms may reveal novel PDEs as targets for the development of therapeutically useful glucose-dependent insulin secretagogues.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Phosphodiesterase Inhibitors, Mice, Obese, Glucagon, Peptide Fragments, Piperazines, Mice, Inbred C57BL, Pancreatic Neoplasms, Islets of Langerhans, Mice, Glucose, Glucagon-Like Peptide 1, Insulin Secretion, Cyclic AMP, Animals, Insulin, Calcium, Insulinoma, Protein Precursors, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?